You are here

DnaA and the timing of chromosome replication in Escherichia coli as a function of growth rate.

TitleDnaA and the timing of chromosome replication in Escherichia coli as a function of growth rate.
Publication TypeJournal Article
Year of Publication2011
AuthorsGrant, MAA, Saggioro, C, Ferrari, U, Bassetti, B, Sclavi, B, Cosentino Lagomarsino, M
JournalBMC Syst Biol
Volume5
Pagination201
Date Published2011
ISSN1752-0509
KeywordsAdenosine Triphosphate, Bacterial Proteins, Computer Simulation, DNA Replication Timing, DNA-Binding Proteins, Escherichia coli, Gene Expression Regulation, Fungal, Hydrolysis, Models, Biological
Abstract

BACKGROUND: In Escherichia coli, overlapping rounds of DNA replication allow the bacteria to double in faster times than the time required to copy the genome. The precise timing of initiation of DNA replication is determined by a regulatory circuit that depends on the binding of a critical number of ATP-bound DnaA proteins at the origin of replication, resulting in the melting of the DNA and the assembly of the replication complex. The synthesis of DnaA in the cell is controlled by a growth-rate dependent, negatively autoregulated gene found near the origin of replication. Both the regulatory and initiation activity of DnaA depend on its nucleotide bound state and its availability.RESULTS: In order to investigate the contributions of the different regulatory processes to the timing of initiation of DNA replication at varying growth rates, we formulate a minimal quantitative model of the initiator circuit that includes the key ingredients known to regulate the activity of the DnaA protein. This model describes the average-cell oscillations in DnaA-ATP/DNA during the cell cycle, for varying growth rates. We evaluate the conditions under which this ratio attains the same threshold value at the time of initiation, independently of the growth rate.CONCLUSIONS: We find that a quantitative description of replication initiation by DnaA must rely on the dependency of the basic parameters on growth rate, in order to account for the timing of initiation of DNA replication at different cell doubling times. We isolate two main possible scenarios for this, depending on the roles of DnaA autoregulation and DnaA ATP-hydrolysis regulatory process. One possibility is that the basal rate of regulatory inactivation by ATP hydrolysis must vary with growth rate. Alternatively, some parameters defining promoter activity need to be a function of the growth rate. In either case, the basal rate of gene expression needs to increase with the growth rate, in accordance with the known characteristics of the dnaA promoter. Furthermore, both inactivation and autorepression reduce the amplitude of the cell-cycle oscillations of DnaA-ATP/DNA.

DOI10.1186/1752-0509-5-201
Alternate JournalBMC Syst Biol
PubMed ID22189092
PubMed Central IDPMC3309966