You are here

Microfluidic chemostat for measuring single cell dynamics in bacteria.

TitleMicrofluidic chemostat for measuring single cell dynamics in bacteria.
Publication TypeJournal Article
Year of Publication2013
AuthorsLong, Z, Nugent, E, Javer, A, Cicuta, P, Sclavi, B, Cosentino Lagomarsino, M, Dorfman, KD
JournalLab Chip
Date Published2013 Mar 7
KeywordsDNA Gyrase, Escherichia coli, Genes, Reporter, Green Fluorescent Proteins, Microfluidic Analytical Techniques, Microscopy, Confocal, Time-Lapse Imaging

We designed a microfluidic chemostat consisting of 600 sub-micron trapping/growth channels connected to two feeding channels. The microchemostat traps E. coli cells and forces them to grow in lines for over 50 generations. Excess cells, including the mother cells captured at the start of the process, are removed from both ends of the growth channels by the media flow. With the aid of time-lapse microscopy, we have monitored dynamic properties such as growth rate and GFP expression at the single-cell level for many generations while maintaining a population of bacteria of similar age. We also use the microchemostat to show how the population responds to dynamic changes in the environment. Since more than 100 individual bacterial cells are aligned and immobilized in a single field of view, the microchemostat is an ideal platform for high-throughput intracellular measurements. We demonstrate this capability by tracking with sub-diffraction resolution the movements of fluorescently tagged loci in more than one thousand cells on a single device. The device yields results comparable to conventional agar microscopy experiments with substantial increases in throughput and ease of analysis.

Alternate JournalLab Chip
PubMed ID23334753

Open Positions